Zigzag graphene nanoribbons: bandgap and midgap state modulation.

نویسنده

  • Hassan Raza
چکیده

We study zigzag graphene nanoribbons with periodic edge roughness and report significant band gap opening. Interestingly, such nanoribbons have a near-midgap state with a small band width. We extensively study the electronic structure and the electric-field modulation of the conduction/valence bands and the near-midgap state. We summarize the important electronic-structure features like the band gap, the band width and the effective mass. We show that by applying an external electric field in the width direction, the band width of the near-midgap state varies linearly due to the edge localization, whereas the band gap remains almost constant. Additionally, the effective mass of these states can switch polarity from negative (hole-like) to positive (carrier-like) at the Γ-point with the field modulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Transport Gap Engineering in Zigzag Graphene Nanoribbons

Graphene, a recently discovered form of carbon, has received much attention over the past few years due to its excellent electrical, optical, and thermal properties [1]. With an extraordinary carrier mobility and high current density [2], graphene's application in electronic devices is promising. As a zero bandgap material, pristine graphene cannot be used as a semi-conducting channel in transi...

متن کامل

Effect of Nanoribbon Width and Strain on the Electronic Properties of the WS2 Nanoribbon

Materials of the general form MX2 (transition metal dichalcogenides) have generated a lot of interest recently. They can form nanoribbons like graphene and such nanoribbons have versatile electronic structures and can be metallic or semiconducting by changing the edges of the ribbon. The electronic properties of such materials are not fully understood till now. In this paper we investigate one ...

متن کامل

Quantitative analysis of structure and bandgap changes in graphene oxide nanoribbons during thermal annealing.

Graphene oxide nanoribbons (GONRs) are wide bandgap semiconductors that can be reduced to metallic graphene nanoribbons. The transformation of GONRs from their semiconductive to the metallic state by annealing has attracted significant interest due to its simplicity. However, the detailed process by which GONRs transform from wide-bandgap semiconductors to semimetals with a near zero bandgap is...

متن کامل

Coherent phonons in carbon nanotubes and graphene

We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 23 38  شماره 

صفحات  -

تاریخ انتشار 2011